A Multi-Bit Fully Homomorphic Encryption with Shorter Public Key from LWE

نویسندگان

  • Zhigang Chen
  • Xinxia Song
چکیده

The efficiency of fully homomorphic encryption is a big question at present. To improve efficiency of fully homomorphic encryption, we use the technique of packed ciphertext to construct a multi-bit fully homomorphic encryption based on Learning with Errors problem. Our scheme has a short public key. Since our fully homomorphic encryption scheme builds on the basic encryption scheme that choose Learning with Errors samples from Gaussian distribution and add Gaussian error to it, which result in that the number of Learning with Errors samples decrease from 2nlogq to n+1. We prove that our fully homomorphic encryption scheme is feasible and its security relies on the hardness of Learning with Errors problem. In addition we adapt the optimization for the process of key switching from GHS13 and formal this new process of key switching for multi-bit fully homomorphic encryption. At last, we analyze the concert parameters and compare these parameters between our scheme and GHS13 scheme. The data show that our scheme has public key smaller by a factor of about logq than it in GHS13 scheme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fully Homomorphic Encryption over the Integers Revisited

Two main computational problems serve as security foundations of current fully homomorphic encryption schemes: Regev’s Learning With Errors problem (LWE) and HowgraveGraham’s Approximate Greatest Common Divisor problem (AGCD). Our first contribution is a reduction from LWE to AGCD. As a second contribution, we describe a new AGCD-based fully homomorphic encryption scheme, which outperforms all ...

متن کامل

Fully Homomophic Encryption over the Integers Revisited

Two main computational problems serve as security foundations of current fully homomorphic encryption schemes: Regev’s Learning With Errors problem (LWE) and HowgraveGraham’s Approximate Greatest Common Divisor problem (AGCD). Our first contribution is a reduction from LWE to AGCD. As a second contribution, we describe a new AGCD-based fully homomorphic encryption scheme, which outperforms all ...

متن کامل

Two Round MPC from LWE via Multi-Key FHE

We construct a general multiparty computation (MPC) protocol in the common random string (CRS) model with only two rounds of interaction, which is known to be optimal. In the honest-but-curious setting we only rely on the learning with errors (LWE) assumption, and in the fully malicious setting we additionally assume the existence of non-interactive zero knowledge arguments (NIZKs). Previously,...

متن کامل

Fully Homomorphic Encryption, Approximate Lattice Problem and LWE

In this paper, we first introduce a new concept of approximate lattice problem (ALP), which is an extension of learning with errors (LWE). Next, we propose two ALP-based public key encryption schemes. Then, we construct two new fully homomorphic encryption scheme (FHE) based on respectively approximate principal ideal lattice problem with related modulus (APIP-RM) and approximate lattice proble...

متن کامل

Batched Multi-hop Multi-key FHE from ring-LWE with Compact Ciphertext Extension

Traditional fully homomorphic encryption (FHE) schemes support computation on data encrypted under a single key. In STOC 2012, López-Alt et al. introduced the notion of multi-key FHE (MKFHE), which allows homomorphic computation on ciphertexts encrypted under different keys. In this work, we focus on MKFHE constructions from standard assumptions and propose a new construction of ring-LWE-based ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015